CANNABIS THERAPY FOR PEDIATRIC EPILEPSIES

Bonni S. Goldstein, M.D. Medical Director, Canna-Centers

"There are many cases of so-called epilepsy in adults... in which India hemp (Indica/Kush) is the most useful agent with which I am acquainted"

Dr. J. R. Reynolds The Lancet (1890)

"Although the number of available antiepileptic drugs has increased substantially during the past 20 years, about a third of patients remain resistant to medical treatment."

Moshé, Solomon L., et al. "Epilepsy: new advances" The Lancet (**2014**)

Pediatric Epilepsy

Febrile Seizures

- Benign Rolandic Epilepsy (BECTS)
- Juvenile Myoclonic
 Epilepsy
- Dravet Syndrome
- Infantile Spasms (West's Syndrome)
- Lennox-Gastaut Syndrome
- Childhood Absence Epilepsy

- Benign Occipital Epilepsy
- Mitochondrial Disorders (i.e. MELAS and MERRF)
- Landau-Kleffner Syndrome (acquired epileptic aphasia)
- Rasmussen Syndrome
- Other structural, metabolic and genetic causes (hemimegalencephaly, lissencephaly, TS, Sturge-Weber, etc)

Medically Refractory Seizures

 TABLE 2. SUCCESS OF ANTIEPILEPTIC-DRUG

 REGIMENS IN 470 PATIENTS WITH PREVIOUSLY

 UNTREATED EPILEPSY.

VARIABLE	No. (%)
Response to first drug	222 (47)
Seizure-free during continued therapy with first drug	207 (44)
Remained seizure-free after discontinuation of first drug	15 (3)
Response to second drug	61 (13)
Seizure-free during monotherapy with second drug	41 (9)
Remained seizure-free after discontinuation of second drug	20 (4)
Response to third drug or multiple drugs	18 (4)
Seizure-free during monotherapy with third drug	6(1)
Seizure-free during therapy with two drugs	12 (3)
Total	301 (64)

Kwan P, Brodie MJ. NEJM 2000;342:314-319

Burden of Refractory Epilepsy

- Poor quality of life
- Side effects of medications
- Cognitive decline
- Injuries
- Psychosocial dysfunction
- Restricted lifestyle
- Increased mortality

Side Effects of AEDs

- Lethargy/somnolence
- Loss of focus, learning, memory
- Anorexia, failure to thrive
- Loss of speech
- Loss of social skills
- Loss of motor skills

- Incontinence
- Insomnia
- Felbamate: aplastic anemia/liver failure
- Vigabatrin (sabril): permanent vision loss

POOR QUALITY OF LIFE FOR WHOLE FAMILY!

Evidence of ECS Dysfunction in Epilepsy

- Blockage of the CB1 receptor produced status epilepticus (Wallace, et al. 2003, Deshpande, et al. 2007)
- Evaluation of epileptic human brain tissue removed surgically showed 60% deficiency of enzyme needed to produce 2-AG (Ludanyi, et al. 2008)
- Cerebrospinal fluid levels of endocannabinoids were found to be reduced in patients with untreated newly diagnosed temporal lobe epilepsy (Romigi, et. al. 2010)

Literature Review

1978 Mechoulam et al

- 9 patients randomized to CBD 200 mg/day or placebo
- 2/4 CBD achieved sz freedom
- 0/5 placebo reported improvement
- No toxic side effects

1980: Cunha et al

- 16 refractory T-C sz pts
 - 8 received placebo/8 received CBD 200-300 mg/day
 - CBD group: 3 sz-free, 4 improved, 1 unchanged
 - Placebo group: 1 improved, 7 unchanged

1985: Ames et al

- 12 patients received CBD 200-300 mg/day or placebo
- No benefit; only side effect mild drowsiness

Treatment with CBD in oily solution of drug-resistant pediatric epilepsies

Pelliccia et al: 2005 Congress on Cannabis and the Cannabinoids, Leiden, The Netherlands: IACM

Open Study of 18 pediatric patients with refractory seizure disorders treated with CBD

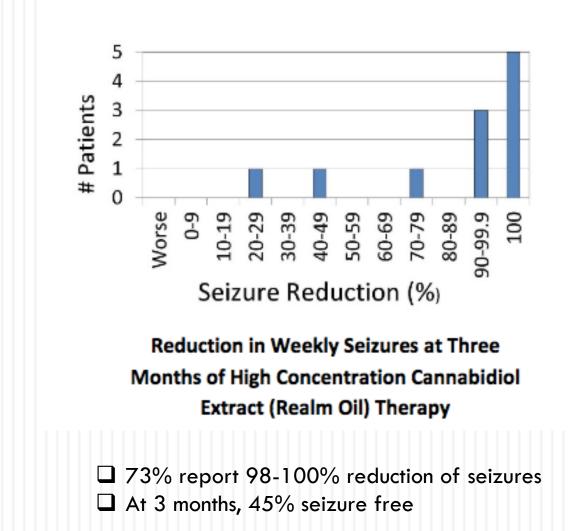
Authors concluded:

- No side effects of such a severity were observed as to require CBD discontinuation
- In most of the treated children, an improvement of the crises was obtained equal to, or higher than, 25% in spite of the low CBD doses administered
- In all CBD-treated children a clear improvement of consciousness and spasticity (whenever present) was observed

Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy

Porter B, Jacobsen C. Epilepsy & Behavior (2013)

- Survey of 19 patients using CBD-rich cannabis
- Thirteen children had Dravet syndrome, four had Doose syndrome, and one each had Lennox–Gastaut syndrome and idiopathic epilepsy
- Average number of antiepileptic drugs (AEDs) tried before CBD = 12
- 84% (16/19) reported a reduction in their child's seizure frequency while taking cannabidiol-enriched cannabis
 - •11% (2/19) reported complete seizure freedom


•42% (8/19) reported a greater than 80% reduction in seizure frequency

•32% (6/19) reported a 25–60% seizure reduction

- Other beneficial effects included increased alertness, better mood, and improved sleep
- Side effects included drowsiness and fatigue

Whole Cannabis Extract of High Concentration Cannabidiol May Calm Seizures in Highly Refractory Pediatric Epilepsies

Gedde and Maa: American Epilepsy Society, 67th Annual Meeting, December 10, 2013

Perceived efficacy of cannabidiol-enriched cannabis extracts for treatment of pediatric epilepsy: A potential role for infantile spasms and Lennox-Gastaut Syndrome. Hussain, S.A. et al. *Epilepsy & Behavior* (April 2015)

- 117 parents of children with epilepsy (including 53 with IS or LGS) who had administered CBD products to their children
- 85% reported seizure reduction
- 14% reported complete seizure freedom
- Average # of AEDs tried: 8
- 30% reported increased appetite
- 53% improved sleep; 71% improved alertness; 63% improved mood
- "Extraordinarily vulnerable to participation bias and limited by lack of blinded outcome ascertainment"

CBD Anticonvulsant Mechanisms of Action

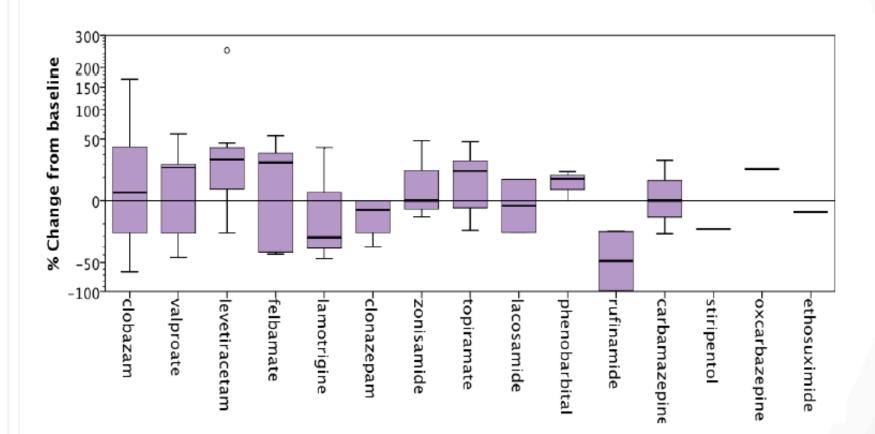
Thought to be due to combination of beneficial effects stacking upon one another (polypharmacology)

- Receptor-independent channels
- Binds or blocks non-cannabinoid receptors thereby modulating neurotransmitter excitation
 - Blocks NMDA receptor
 - Binds to GABA receptors
- Modulates ion channels
 - Modulates BK (potassium) channels in neurons
 - Modulates calcium release in neurons
- Blocks uptake of EC thereby enhancing/normalizing EC levels
- Anti-inflammatory (inflammatory reactions in brain can enhance neuronal excitability and impair cell survival)
- Neuroprotective/anti-oxidant (reduced oxidative stress/glutamate toxicity)

CBD Anticonvulsant Mechanisms of Action

- CBD blocks NMDA receptor
 - similar mechanism as Felbamate
- CBD enhances GABA receptor
 - similar mechanism as Felbamate, Depakote, Tegretol,
 Onfi, Phenobarbital
- CBD stabilizes ion channels
 - similar mechanism as Banzel, Lamictal, Dilantin, Keppra, Trileptal

CBD and AED overlap


CBD actions:	X?	~	~	~	~	~	~	?	?
	Voltage-gated Na* channels	HVA Ca ²⁺ channels	LVA Ca ²⁺ channels	Voltage-gated K° channels	GABA _A receptors	GABA Turnover	Glutamate receptors	Synaptic vesicle protein 2A	Carbonic anhydrase
Phenobarbital		+			+++		+		
Phenytoin	+++								
Ethosuximide			+++						
Carbamazepine	+++								
Sodium valproate	++		++			++			
Benzodiazepines					+++				
Vigabatrin						+++			
Lamotrigine	+++	++							
Gabapentin	+	++				+			
Felbamate	++	++			++		++		
Topiramate	++	++		+	++		++		+
Tiagabine						+++			
Oxcarbazepine	+++								
Levetiracetam		+			+			+++	
Pregabalin		++							
Zonisamide	+++		++						+
Stiripentol					+++				
Rufinamide	+++								
Lacosamide	+++								+
Eslicarbazepine acetate	+++								
Retigabine				***					
Perampanel							+++		

Neurosci Lett. 2014 Apr 30;566:269-74. doi: 10.1016/j.neulet.2014.03.013. Epub 2014 Mar 16.

Voltage-gated sodium (NaV) channel blockade by plant cannabinoids does not confer anticonvulsant effects per se.

Hill AJ¹, Jones NA¹, Smith I², Hill CL¹, Williams CM³, Stephens GJ², Whalley BJ⁴.

CBD - **AED** interaction

Friedman, et al. The effect of Epidiolex (cannabidiol) on serum levels of concominant anti-epileptic drugs in children and young adults with treatment-resistant epilepsy in an expanded access program. American Epilepsy Society. Seattle, WA2014.

Requirements for CBD Oil

Concentrated

- For example, 50 mg/ml, 100 mg/ml, 200 mg/ml
- Consistent in strain
 - Different strains (even if high CBD) can wreak havoc in epilepsy patients
- Tested
 - Potency, pesticides, terpenoid profile, mold/microbes, residual solvent (if used)
- Affordable
 - 5¢ per mg 50¢ per mg
- Reliable supply
 - Patients who start treatment may wean other medications
 - Catastrophic if oil not available and weaned AEDs

Cannabidivarin (CBDV) and THCA

Cannabidivarin is anticonvulsant in mouse and rat Hill, AJ et al. British Journal of Pharmacology December 2012

Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism Hill, TD et al. British Journal of Pharmacology October 2013 Nonpsychotropic Plant Cannabinoids, Cannabidivarin (CBDV) and Cannabidiol (CBD), Activate and Desensitize Transient Receptor Potential Vanilloid 1 (TRPV1) Channels in Vitro: Potential for the Treatment of Neuronal Hyperexcitability lannotti, FA et al. ACS Chemical Science July 2014

- Many patients in California are using THCA oil in addition to CBD oil with enhancement of seizure reduction
- CBDV research ongoing and may be available soon

🗆 Criteria:

- Diagnosis of Intractable Epilepsy
- At least three month trial with same high CBD oil
- Oil tested at reputable cannabis lab
- Neurologist aware of plan
- 112 patients aged 1 44 years of age
- 15 of 112 (13%) were not on AEDs
- Avg number of AEDs tried and failed: 12
- □ Strains: AC/DC, Charlotte's Web, others
- \square Terpenoid profile: high in β caryophyllene,
- CBD:THC ratio: 15:1 up to 31:1 (one patient at 6:1)

112 patients with the following diagnoses:

DIAGNOSIS	# OF PATIENTS
Cryptogenic	37
Genetic Causes	16
Lennox-Gastaut Syndrome	13
Congenital Brain Malformations	9
Dravet Syndrome	8
Birth Trauma	7
Infantile Spasms	4
Metabolic Syndromes	4
Encephalitis	3
Absence Seizures	3
Aicardi Syndrome	3
Doose Syndrome	2
Other Syndromes	2
Tuberous Sclerosis	1

No Response	11/112	10%
No Reduction in # of seizures but	18/112	16%
reduction in severity /duration		
25-49% reduction of seizures	10/112	9%
50-74% reduction of seizures	18/112	16%
75-99% reduction of seizures	42/112	38%
Seizure Free	13/112	12%

Overall 75% of patients had > 25% reduction of seizures

	Cryptogenic	Infantile Spasms	Genetic	Metabolic Syndromes	Encephalitis	Tuberous Sclerosis	Birth Trauma	Absence Seizures	Congenital Brain Malformations	Aicardi Syndrome	Doose Syndrome	Dravet Syndrome	LGS	Other syndromes
No Response	5	1	2						1				2	
No Change in # of SZ	7	2	2	1	1					1		2	1	1
25-49% Seizure Reduction	1		2				2			1	1	2		
50-74% Seizure Reduction	7						2	2	2	1	1		3	
75-99% Seizure Reduction	12	1	9	2	2	1	1	1	4			3	7	
Seizure Free	5		1	1			2		2			1		1

Genetic Syndromes include: SCN8A, EHMT1, Dup5Q, Rett Syndrome (MECP2), Nieman Pick C (SMPD1), KCNq2/3, SYNGAP1, Down Syndrome, Mowat-Wilson (ZEB2), CDG1K

Congenital Brain Malformations include: Lissencephaly, Schizencephaly, Cortical Dysplasia, Pachygyria

Other Syndromes include: Parry-Romberg Syndrome and Smith-Magenis Syndrome

- 10/13 Seizure Free patients were able to wean one or more AEDs
 5/13 (38%) are pharmaceutical free!
- 14/42 patients with 75-99% reduction were able to wean off one or more AEDs
 - 7/42 (17%) are pharmaceutical free!
- 8/18 patients with 50-74% reduction were able to wean off one or more AEDs

Overall 29% able to wean one or more AEDs

Overall 11% pharmaceutical-free

Beneficial Side Effects reported by parents:

- More alert and aware
- More energy/endurance for therapy and play
- Better sleep
- Better mood, happier, smiles more
- Better speech
- Better appetite
- More opinionated, able to argue
- Improved focus and memory
- Improved balance and coordination
- No emergency room visits or hospitalizations
- Two patients with Type 1 DM more stable glucose levels

Negative side effects reported by parents

- Decreased sleep (3 patients)
- Diarrhea (4 patients)

Reasons 11 patients who reported failed treatment

- 6 reported worsening of seizures
- 1 mother stopped oil because 19 yo patient was noncompliant
- 4 reported too expensive and not improved